Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Antimicrob Resist Infect Control ; 12(1): 46, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2315114

RESUMEN

BACKGROUND: Healthcare facilities have been challenged by the risk of SARS-CoV-2 transmission between healthcare workers (HCW) and patients. During the first wave of the COVID-19 pandemic, infections among HCW were observed, questioning infection prevention and control (IPC) measures implemented at that time. AIM: This study aimed to identify nosocomial transmission routes of SARS-CoV-2 between HCW and patients in a tertiary care hospital. METHODS: All SARS-CoV-2 PCR positive HCW and patients identified between 1 March and 19 May 2020, were included in the analysis. Epidemiological data were collected from patient files and HCW contact tracing interviews. Whole genome sequences of SARS-CoV-2 were generated using Nanopore sequencing (WGS). Epidemiological clusters were identified, whereafter WGS and epidemiological data were combined for re-evaluation of epidemiological clusters and identification of potential transmission clusters. HCW infections were further classified into categories based on the likelihood that the infection was acquired via nosocomial transmission. Secondary cases were defined as COVID-19 cases in our hospital, part of a transmission cluster, of which the index case was either a patient or HCW from our hospital. FINDINGS: The study population consisted of 293 HCW and 245 patients. Epidemiological data revealed 36 potential epidemiological clusters, with an estimated 222 (75.7%) HCW as secondary cases. WGS results were available for 195 HCW (88.2%) and 20 patients (12.8%) who belonged to an epidemiological cluster. Re-evaluation of the epidemiological clusters, with the available WGS data identified 31 transmission clusters with 65 (29.4%) HCW as secondary cases. Transmission clusters were all part of 18 (50.0%) previously determined epidemiological clusters, demonstrating that several larger outbreaks actually consisted, of several smaller transmission clusters. A total of 21 (7.2%) HCW infections were classified as from confirmed nosocomial, of which 18 were acquired from another HCW and 3 from a patient. CONCLUSION: The majority of SARS-CoV-2 infections among HCW could be attributed to community-acquired infection. Infections among HCW that could be classified as due to nosocomial transmission, were mainly caused by HCW-to-HCW transmission rather than patient-to-HCW transmission. It is important to recognize the uncertainties of cluster analyses based solely on epidemiological data.


Asunto(s)
COVID-19 , Infección Hospitalaria , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2/genética , Países Bajos/epidemiología , Pandemias/prevención & control , Centros de Atención Terciaria , Personal de Salud , Secuenciación Completa del Genoma , Infección Hospitalaria/epidemiología
3.
Nat Med ; 26(9): 1405-1410, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-653871

RESUMEN

In late December 2019, a cluster of cases of pneumonia of unknown etiology were reported linked to a market in Wuhan, China1. The causative agent was identified as the species Severe acute respiratory syndrome-related coronavirus and was named SARS-CoV-2 (ref. 2). By 16 April the virus had spread to 185 different countries, infected over 2,000,000 people and resulted in over 130,000 deaths3. In the Netherlands, the first case of SARS-CoV-2 was notified on 27 February. The outbreak started with several different introductory events from Italy, Austria, Germany and France followed by local amplification in, and later also outside, the south of the Netherlands. The combination of near to real-time whole-genome sequence analysis and epidemiology resulted in reliable assessments of the extent of SARS-CoV-2 transmission in the community, facilitating early decision-making to control local transmission of SARS-CoV-2 in the Netherlands. We demonstrate how these data were generated and analyzed, and how SARS-CoV-2 whole-genome sequencing, in combination with epidemiological data, was used to inform public health decision-making in the Netherlands.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/genética , Genoma Viral/genética , Pandemias , Neumonía Viral/genética , Betacoronavirus/patogenicidad , COVID-19 , Toma de Decisiones Clínicas , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Humanos , Países Bajos/epidemiología , Neumonía Viral/epidemiología , Neumonía Viral/patología , Neumonía Viral/virología , Salud Pública , SARS-CoV-2 , Secuenciación Completa del Genoma
4.
Lancet Infect Dis ; 20(11): 1273-1280, 2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-623256

RESUMEN

BACKGROUND: 10 days after the first reported case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the Netherlands (on Feb 27, 2020), 55 (4%) of 1497 health-care workers in nine hospitals located in the south of the Netherlands had tested positive for SARS-CoV-2 RNA. We aimed to gain insight in possible sources of infection in health-care workers. METHODS: We did a cross-sectional study at three of the nine hospitals located in the south of the Netherlands. We screened health-care workers at the participating hospitals for SARS-CoV-2 infection, based on clinical symptoms (fever or mild respiratory symptoms) in the 10 days before screening. We obtained epidemiological data through structured interviews with health-care workers and combined this information with data from whole-genome sequencing of SARS-CoV-2 in clinical samples taken from health-care workers and patients. We did an in-depth analysis of sources and modes of transmission of SARS-CoV-2 in health-care workers and patients. FINDINGS: Between March 2 and March 12, 2020, 1796 (15%) of 12 022 health-care workers were screened, of whom 96 (5%) tested positive for SARS-CoV-2. We obtained complete and near-complete genome sequences from 50 health-care workers and ten patients. Most sequences were grouped in three clusters, with two clusters showing local circulation within the region. The noted patterns were consistent with multiple introductions into the hospitals through community-acquired infections and local amplification in the community. INTERPRETATION: Although direct transmission in the hospitals cannot be ruled out, our data do not support widespread nosocomial transmission as the source of infection in patients or health-care workers. FUNDING: EU Horizon 2020 (RECoVer, VEO, and the European Joint Programme One Health METASTAVA), and the National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Asunto(s)
Betacoronavirus/genética , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infección Hospitalaria/epidemiología , Personal de Salud , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Adulto , Anciano , COVID-19 , Infecciones Comunitarias Adquiridas/virología , Infecciones por Coronavirus/virología , Infección Hospitalaria/virología , Estudios Transversales , Femenino , Variación Genética , Hospitales de Enseñanza , Humanos , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Países Bajos/epidemiología , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Secuenciación Completa del Genoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA